Warning: This post is several years old and the author has marked it as poor quality (compared to more recent posts). It has been left intact for historical reasons, but but its content (and code) may be inaccurate or poorly written.

I’m working on a software project and I’d love the startup screen to be unique. I want the splash image to be generated programmatically. I have to generate it from the script, but how can I reliably print text on an image with fonts vary across operating systems? Keep in mind many OS’s don’t have “arial.ttf”, or no truetype fonts at all!

First, I created a 2D binary array to represent the alphabet using pixel fonts such as this as a reference. The word I’m trying to create is “QRSS VD” (the name of my program). I store the data in strings, as seen below. I use 1’s to mark pixels, and spaces to mark empty spaces.

data="""
1111 1111 1111 1111   1  1 111
1  1 1  1 1    1      1  1 1  1
1  1 1111 1111 1111   1  1 1  1
1 11 1 1     1    1   1 1  1  1
1111 1 11 1111 1111    1   111
"""

Once I think it looks nice, I replace the spaces with zeros to make it take up a lot of visual space…

data2="""
1111011110111101111000100101110
1001010010100001000000100101001
1001011110111101111000100101001
1011010100000100001000101001001
1111010110111101111000010001110
"""

Then I further obscure it by replacing linebreaks with a different symbol, such as the number 2, then break the lines so they’re not lined up…

b="1111011110111101111000100101110210010100101000010000001001010012"
b+="1001011110111101111000100101001210110101000001000010001010010012"
b+="1111010110111101111000010001110"

The result is a pretty cool way to obscure the text. I don’t know why you’d want to, but if you want to make sure that no one goes in and changes the letters around (at least without making them think pretty hard about it) you could look at ways to further encrypt this data stream. From here, I create an image using the Python Imaging Library, setting pixel values to 255*b[x,y] (so 0 stays 0 and 1 becomes 255, perfect for an 8-bit image). After enlarging, here’s the result:

nearest

Now let’s make it a little bit less pixelated. It’s not a cure-all method, but blurring it up a little with a bilinear filter helps a lot…

bilinear

Then I apply the code below which applies a cool colormap to the pixel values. I’ll provide cleaner code for this later (I have a really cool way of generating colormaps and saving them as arrays of RGB tuples). Then I go through and plot some random sin wavs on top of it. Sweet! Here are 6 images generated from the program run 6 times. Notice the randomness of the sine wavs!

qrss vd
qrss vd
qrss vd
qrss vd
qrss vd
qrss vd

A different image is generated every time the script runs, and it requires no external files (bitmaps or fonts) and should work well on all operating systems.

from PIL import Image
from PIL import ImageOps
from PIL import ImageFilter
from random import randint
import scipy

def genLogo():
	colormap=[(0, 0, 129), (0, 0, 134), (0, 0, 139), (0, 0, 143), (0, 0, 148), (0, 0, 152), (0, 0, 157), (0, 0, 161), (0, 0, 166), (0, 0, 170), (0, 0, 175), (0, 0, 180), (0, 0, 184), (0, 0, 189), (0, 0, 193), (0, 0, 198), (0, 0, 202), (0, 0, 207), (0, 0, 211), (0, 0, 216), (0, 0, 220), (0, 0, 225), (0, 0, 230), (0, 0, 234), (0, 0, 239), (0, 0, 243), (0, 0, 248), (0, 0, 252), (0, 0, 255), (0, 0, 255), (0, 0, 255), (0, 0, 255), (0, 2, 255), (0, 7, 255), (0, 11, 255), (0, 14, 255), (0, 18, 255), (0, 23, 255), (0, 27, 255), (0, 31, 255), (0, 34, 255), (0, 39, 255), (0, 43, 255), (0, 47, 255), (0, 51, 255), (0, 54, 255), (0, 59, 255), (0, 63, 255), (0, 67, 255), (0, 71, 255), (0, 75, 255), (0, 79, 255), (0, 83, 255), (0, 87, 255), (0, 91, 255), (0, 95, 255), (0, 99, 255), (0, 103, 255), (0, 107, 255), (0, 111, 255), (0, 115, 255), (0, 119, 255), (0, 123, 255), (0, 127, 255), (0, 131, 255), (0, 135, 255), (0, 139, 255), (0, 143, 255), (0, 147, 255), (0, 151, 255), (0, 155, 255), (0, 159, 255), (0, 163, 255), (0, 167, 255), (0, 171, 255), (0, 175, 255), (0, 179, 255), (0, 183, 255), (0, 187, 255), (0, 191, 255), (0, 195, 255), (0, 199, 255), (0, 203, 255), (0, 207, 255), (0, 211, 255), (0, 215, 255), (0, 219, 254), (0, 223, 251), (0, 227, 248), (2, 231, 245), (5, 235, 241), (7, 239, 238), (11, 243, 235), (14, 247, 232), (18, 251, 228), (21, 255, 225), (23, 255, 222), (27, 255, 219), (31, 255, 215), (34, 255, 212), (37, 255, 208), (40, 255, 205), (44, 255, 203), (47, 255, 199), (50, 255, 195), (54, 255, 192), (57, 255, 189), (60, 255, 186), (63, 255, 183), (66, 255, 179), (70, 255, 176), (73, 255, 173), (76, 255, 170), (79, 255, 166), (83, 255, 163), (86, 255, 160), (89, 255, 157), (92, 255, 154), (95, 255, 150), (99, 255, 147), (102, 255, 144), (105, 255, 141), (108, 255, 137), (112, 255, 134), (115, 255, 131), (118, 255, 128), (121, 255, 125), (124, 255, 121), (128, 255, 118), (131, 255, 115), (134, 255, 112), (137, 255, 108), (141, 255, 105), (144, 255, 102), (147, 255, 99), (150, 255, 95), (154, 255, 92), (157, 255, 89), (160, 255, 86), (163, 255, 83), (166, 255, 79), (170, 255, 76), (173, 255, 73), (176, 255, 70), (179, 255, 66), (183, 255, 63), (186, 255, 60), (189, 255, 57), (192, 255, 54), (195, 255, 50), (199, 255, 47), (202, 255, 44), (205, 255, 41), (208, 255, 37), (212, 255, 34), (215, 255, 31), (218, 255, 28), (221, 255, 24), (224, 255, 21), (228, 255, 18), (231, 255, 15), (234, 255, 12), (238, 255, 8), (241, 252, 5), (244, 248, 2), (247, 244, 0), (250, 240, 0), (254, 236, 0), (255, 233, 0), (255, 229, 0), (255, 226, 0), (255, 221, 0), (255, 218, 0), (255, 215, 0), (255, 211, 0), (255, 207, 0), (255, 203, 0), (255, 199, 0), (255, 196, 0), (255, 192, 0), (255, 188, 0), (255, 184, 0), (255, 180, 0), (255, 177, 0), (255, 173, 0), (255, 169, 0), (255, 165, 0), (255, 162, 0), (255, 159, 0), (255, 155, 0), (255, 151, 0), (255, 147, 0), (255, 143, 0), (255, 140, 0), (255, 136, 0), (255, 132, 0), (255, 128, 0), (255, 125, 0), (255, 121, 0), (255, 117, 0), (255, 114, 0), (255, 110, 0), (255, 106, 0), (255, 102, 0), (255, 99, 0), (255, 95, 0), (255, 91, 0), (255, 88, 0), (255, 84, 0), (255, 80, 0), (255, 76, 0), (255, 73, 0), (255, 69, 0), (255, 65, 0), (255, 62, 0), (255, 58, 0), (255, 54, 0), (255, 51, 0), (255, 47, 0), (255, 43, 0), (255, 39, 0), (255, 36, 0), (255, 32, 0), (255, 28, 0), (255, 25, 0), (255, 21, 0), (253, 17, 0), (248, 14, 0), (244, 10, 0), (240, 6, 0), (235, 2, 0), (230, 0, 0), (225, 0, 0), (221, 0, 0), (217, 0, 0), (212, 0, 0), (207, 0, 0), (203, 0, 0), (198, 0, 0), (194, 0, 0), (189, 0, 0), (185, 0, 0), (180, 0, 0), (175, 0, 0), (171, 0, 0), (166, 0, 0), (162, 0, 0), (157, 0, 0), (152, 0, 0), (148, 0, 0), (144, 0, 0), (139, 0, 0), (134, 0, 0), (130, 0, 0), (134, 0, 0), (130, 0, 0)]
	def red(val):
		return colormap[val][0]
	def green(val):
		return colormap[val][1]
	def blue(val):
		return colormap[val][2]
	def colorize(im):
		r=Image.eval(im,red)
		g=Image.eval(im,green)
		b=Image.eval(im,blue)
		im=Image.merge("RGB",(r,g,b))
		return im
	b="1111011110111101111000100101110210010100101000010000001001010012"
	b+="1001011110111101111000100101001210110101000001000010001010010012"
	b+="1111010110111101111000010001110"
	b=b.split("2")
	im=Image.new("L",(33+15,7+13))
	data=im.load()
	for y in range(len(b)):
		for x in range(len(b[y])):
			data[x+6,y+6]=int(b[y][x])*255
	scale=15
	im=im.resize((im.size[0]*scale,im.size[1]*scale))
	data=im.load()
	def drawSin(width,height,vertoffset,horizoffset,thickness,darkness):
		for x in range(im.size[0]):
			y=scipy.sin((x-horizoffset)/float(width))*height+vertoffset
			for i in range(thickness):
				if 0<=y+i<im.size[1] and 0<=x<im.size[0]:
					#print x,im.size[0],y+i,im.size[1]
					data[x,y+i]=data[x,y+i]+darkness

	for i in range(5):
		print "line",i
		drawSin(randint(5,75),randint(-100,200),randint(0,im.size[1]),
				randint(0,im.size[0]),randint(3,15),70)
	for i in range(10):
		im=im.filter(ImageFilter.SMOOTH_MORE)
	im=colorize(im)
	return im

im=genLogo()
im.save('logo.png',"PNG")




Wow, I can’t believe I took-on such a massive challenge this week! Ironically I’ve worked harder and learned more in the last 4 days than I have over the last 9 months of dental school. This is an incredible feeling of accomplishment. My program, coded from scratch, polls the sound card continuously and makes extremely large spectrographs. It’s not finished, but it’s working. I’m impressed!

gotit

The image above is the actual-size display of the image below. The image below was actually cropped to less than 3,000 pixels high, whereas the original is over 8,000 pixels high!

qrss_big

Note from Future Scott (ten years later, August 2019)

I remember this day! It was the first time I completed a big software project, and it was a great feeling. It motivated me to continue working on software for years to come. I also got a kick out of this quote from early-dental-student Scott:

“I’ve worked harder and learned more in the last 4 days than I have over the last 9 months of dental school.”





Warning: This post is several years old and the author has marked it as poor quality (compared to more recent posts). It has been left intact for historical reasons, but but its content (and code) may be inaccurate or poorly written.

Update: More modern Python data visualization code and examples can be found on GitHub: https://github.com/swharden/Python-GUI-examples

spectrogram scrollbars

My project is coming along nicely. This isn’t an incredibly robust spectrograph program, but it sure gets the job done quickly and easily. The code below will produce a real time scrolling spectrograph entirely with Python! It polls the microphone (or default recording device), should work on any OS, and can be adjusted for vertical resolution / FFT frequency discretion resolution. It has some simple functions for filtering (check out the de-trend filter!) and might serve as a good start to a spectrograph / frequency analysis project. It took my a long time to reach this point! I’ve worked with Python before, and dabbled with the Python Imaging Library (PIL), but this is my first experience with real time linear data analysis and high-demand multi-threading. I hope it helps you. Below are screenshots of the program (two running at the same time) listening to the same radio signals (mostly Morse code) with standard output and with the “de-trending filter” activated.

nofilter
filter
import pyaudio
import scipy
import struct
import scipy.fftpack

from Tkinter import *
import threading
import time, datetime
import wckgraph
import math

import Image, ImageTk
from PIL import ImageOps
from PIL import ImageChops
import time
import random
import threading
import scipy


#ADJUST RESOLUTION OF VERTICAL FFT
bufferSize=2**11
#bufferSize=2**8

#ADJUSTS AVERAGING SPEED NOT VERTICAL RESOLUTION
#REDUCE HERE IF YOUR PC CANT KEEP UP
sampleRate=24000
#sampleRate=64000

p = pyaudio.PyAudio()
chunks=[]
ffts=[]
def stream():
        global chunks, inStream, bufferSize
        while True:
                chunks.append(inStream.read(bufferSize))

def record():
        global w, inStream, p, bufferSize
        inStream = p.open(format=pyaudio.paInt16,channels=1,
                rate=sampleRate,input=True,frames_per_buffer=bufferSize)
        threading.Thread(target=stream).start()
        #stream()

def downSample(fftx,ffty,degree=10):
        x,y=[],[]
        for i in range(len(ffty)/degree-1):
                x.append(fftx[i*degree+degree/2])
                y.append(sum(ffty[i*degree:(i+1)*degree])/degree)
        return [x,y]

def smoothWindow(fftx,ffty,degree=10):
        lx,ly=fftx[degree:-degree],[]
        for i in range(degree,len(ffty)-degree):
                ly.append(sum(ffty[i-degree:i+degree]))
        return [lx,ly]

def smoothMemory(ffty,degree=3):
        global ffts
        ffts = ffts+[ffty]
        if len(ffts)< =degree: return ffty ffts=ffts[1:] return scipy.average(scipy.array(ffts),0) def detrend(fftx,ffty,degree=10): lx,ly=fftx[degree:-degree],[] for i in range(degree,len(ffty)-degree): ly.append((ffty[i]-sum(ffty[i-degree:i+degree])/(degree*2)) *2+128) #ly.append(fft[i]-(ffty[i-degree]+ffty[i+degree])/2) return [lx,ly] def graph(): global chunks, bufferSize, fftx,ffty, w if len(chunks)>0:
                data = chunks.pop(0)
                data=scipy.array(struct.unpack("%dB"%(bufferSize*2),data))
                ffty=scipy.fftpack.fft(data)
                fftx=scipy.fftpack.rfftfreq(bufferSize*2, 1.0/sampleRate)
                fftx=fftx[0:len(fftx)/4]
                ffty=abs(ffty[0:len(ffty)/2])/1000
                ffty1=ffty[:len(ffty)/2]
                ffty2=ffty[len(ffty)/2::]+2
                ffty2=ffty2[::-1]
                ffty=ffty1+ffty2
                ffty=(scipy.log(ffty)-1)*120
                fftx,ffty=downSample(fftx,ffty,2)
                updatePic(fftx,ffty)
                reloadPic()

        if len(chunks)>20:
                print "falling behind...",len(chunks)

def go(x=None):
        global w,fftx,ffty
        print "STARTING!"
        threading.Thread(target=record).start()
        while True:
                #record()
                graph()


def updatePic(datax,data):
     global im, iwidth, iheight
     strip=Image.new("L",(1,iheight))
     if len(data)>iheight:
             data=data[:iheight-1]
     #print "MAX FREQ:",datax[-1]
     strip.putdata(data)
     #print "%03d, %03d" % (max(data[-100:]), min(data[-100:]))
     im.paste(strip,(iwidth-1,0))
     im=im.offset(-1,0)
     root.update()

def reloadPic():
     global im, lab
     lab.image = ImageTk.PhotoImage(im)
     lab.config(image=lab.image)


root = Tk()
im=Image.open('./ramp.tif')
im=im.convert("L")
iwidth,iheight=im.size
im=im.crop((0,0,500,480))
#im=Image.new("L",(100,1024))
iwidth,iheight=im.size
root.geometry('%dx%d' % (iwidth,iheight))
lab=Label(root)
lab.place(x=0,y=0,width=iwidth,height=iheight)
go()

UPDATE! I’m not going to post the code for this yet (it’s very messy) but I got this thing to display a spectrograph on a canvas. What’s the advantage of that? Huge, massive spectrographs (thousands of pixels in all directions) can now be browsed in real time using scrollbars, and when you scroll it doesn’t stop recording, and you don’t lose any data! Super cool.

spectrogram scrollbars




Warning: This post is several years old and the author has marked it as poor quality (compared to more recent posts). It has been left intact for historical reasons, but but its content (and code) may be inaccurate or poorly written.

Update: More modern Python data visualization code and examples can be found on GitHub: https://github.com/swharden/Python-GUI-examples

I’m stretching the limits of what these software platforms were designed to to, but I’m impressed such a hacked-together code produces fast, functional results. The code below is the simplest case code I could create which graphs the audio spectrum of the microphone input. It seems to run fine with about 30+ FPS on my modest machine. It should work on Windows and Linux. I chose not to go with matplotlib because I didn’t think it was fast enough for my needs in this one case. Here’s what the code below looks like running:

python real time tk wav fft

NOTE that this program was designed with the intent of recording the FFTs, therefore if the program “falls behind” the real time input, it will buffer the sound on its own and try to catch up (accomplished by two layers of threading). In this way, all audio gets interpreted. If you’re just trying to create a spectrograph for simple purposes, have it only sample the audio when it needs to, rather than having it sample audio continuously.

import pyaudio
import scipy
import struct
import scipy.fftpack

from Tkinter import *
import threading
import time, datetime
import wckgraph
import math

#ADJUST THIS TO CHANGE SPEED/SIZE OF FFT
bufferSize=2**11
#bufferSize=2**8

# ADJUST THIS TO CHANGE SPEED/SIZE OF FFT
sampleRate=48100
#sampleRate=64000

p = pyaudio.PyAudio()
chunks=[]
ffts=[]
def stream():
        global chunks, inStream, bufferSize
        while True:
                chunks.append(inStream.read(bufferSize))

def record():
        global w, inStream, p, bufferSize
        inStream = p.open(format=pyaudio.paInt16,channels=1,
                rate=sampleRate,input=True,frames_per_buffer=bufferSize)
        threading.Thread(target=stream).start()

def downSample(fftx,ffty,degree=10):
        x,y=[],[]
        for i in range(len(ffty)/degree-1):
                x.append(fftx[i*degree+degree/2])
                y.append(sum(ffty[i*degree:(i+1)*degree])/degree)
        return [x,y]

def smoothWindow(fftx,ffty,degree=10):
        lx,ly=fftx[degree:-degree],[]
        for i in range(degree,len(ffty)-degree):
                ly.append(sum(ffty[i-degree:i+degree]))
        return [lx,ly]

def smoothMemory(ffty,degree=3):
        global ffts
        ffts = ffts+[ffty]
        if len(ffts)< =degree: return ffty
        ffts=ffts[1:]
        return scipy.average(scipy.array(ffts),0)

def detrend(fftx,ffty,degree=10):
        lx,ly=fftx[degree:-degree],[]
        for i in range(degree,len(ffty)-degree):
                ly.append(ffty[i]-sum(ffty[i-degree:i+degree])/(degree*2))
                #ly.append(fft[i]-(ffty[i-degree]+ffty[i+degree])/2)
        return [lx,ly]

def graph():
        global chunks, bufferSize, fftx,ffty, w
        if len(chunks)>0:
                data = chunks.pop(0)
                data=scipy.array(struct.unpack("%dB"%(bufferSize*2),data))
                #print "RECORDED",len(data)/float(sampleRate),"SEC"
                ffty=scipy.fftpack.fft(data)
                fftx=scipy.fftpack.rfftfreq(bufferSize*2, 1.0/sampleRate)
                fftx=fftx[0:len(fftx)/4]
                ffty=abs(ffty[0:len(ffty)/2])/1000
                ffty1=ffty[:len(ffty)/2]
                ffty2=ffty[len(ffty)/2::]+2
                ffty2=ffty2[::-1]
                ffty=ffty1+ffty2
                ffty=scipy.log(ffty)-2
                #fftx,ffty=downSample(fftx,ffty,5)
                #fftx,ffty=detrend(fftx,ffty,30)
                #fftx,ffty=smoothWindow(fftx,ffty,10)
                ffty=smoothMemory(ffty,3)
                #fftx,ffty=detrend(fftx,ffty,10)
                w.clear()
                #w.add(wckgraph.Axes(extent=(0, -1, fftx[-1], 3)))
                w.add(wckgraph.Axes(extent=(0, -1, 6000, 3)))
                w.add(wckgraph.LineGraph([fftx,ffty]))
                w.update()
        if len(chunks)>20:
                print "falling behind...",len(chunks)

def go(x=None):
        global w,fftx,ffty
        print "STARTING!"
        threading.Thread(target=record).start()
        while True:
                graph()

root = Tk()
root.title("SPECTRUM ANALYZER")
root.geometry('500x200')
w = wckgraph.GraphWidget(root)
w.pack(fill=BOTH, expand=1)
go()
mainloop()




Warning: This post is several years old and the author has marked it as poor quality (compared to more recent posts). It has been left intact for historical reasons, but but its content (and code) may be inaccurate or poorly written.

tk scrolling

The goal is simple: have a very large image (larger than the window) automatically scroll across a Python-generated GUI window. I already have the code created to generate spectrograph images in real time, now I just need a way to have them displayed in real time. At first I tried moving the coordinates of my images and even generating new images with create_image(), but everything I did resulted in a tacky “flickering” effect (not to mention it was slow). Thankfully I found that self.canv.move(self.imgtag,-1,0) can move a specific item (self.imgtag) by a specified amount and it does it smoothly (without flickering). Here’s some sample code. Make sure “snip.bmp” is a big image in the same folder as this script

from Tkinter import *
import Image, ImageTk

class scrollingImage(Frame):

     def go(self):
		self.canv.move(self.imgtag,-1,0)
		self.canv.update()
		self.after(100,self.go)

     def __init__(self, parent=None):
		Frame.__init__(self, parent)
		self.master.title("Spectrogram Viewer")
		self.pack(expand=YES, fill=BOTH)
		self.canv = Canvas(self, relief=SUNKEN)
		self.canv.config(width=200, height=200)
		self.canv.config(highlightthickness=0)

		sbarV = Scrollbar(self, orient=VERTICAL)
		sbarH = Scrollbar(self, orient=HORIZONTAL)

		sbarV.config(command=self.canv.yview)
		sbarH.config(command=self.canv.xview)

		self.canv.config(yscrollcommand=sbarV.set)
		self.canv.config(xscrollcommand=sbarH.set)

		sbarV.pack(side=RIGHT, fill=Y)
		sbarH.pack(side=BOTTOM, fill=X)

		self.canv.pack(side=LEFT, expand=YES, fill=BOTH)
		self.im=Image.open("./snip.bmp")
		width,height=self.im.size
		#self.canv.config(scrollregion=(0,0,width,height))
		self.canv.config(scrollregion=(0,0,300,300))
		self.im2=ImageTk.PhotoImage(self.im)
		x,y=0,0
		self.imgtag=self.canv.create_image(x,y,
		     anchor="nw",image=self.im2)
		self.go()

scrollingImage().mainloop()

Alternatively, I found a way to accomplish a similar thing with PyGame. I’ve decided not to use PyGame for my software package however, because it’s too specific and can’t be run well alongside Tk windows, and it would be insanely hard to add scrollbars to the window. However it’s extremely effective at scrolling images smoothly. Anyhow, here’s the code:

import pygame
from PIL import Image

im=Image.open("1hr_original.jpg")
graphic = pygame.image.fromstring(im.tostring(),im.size,im.mode)
screen = pygame.display.set_mode((400, 300))
clock = pygame.time.Clock()
running = 1
x,y=0,0
while running:
   clock.tick(30)
   for event in pygame.event.get():    #get user input
      if event.type == pygame.QUIT:    #if user clicks the close X
           running = 0                 #make running 0 to break out of loop
   screen.blit(graphic, (x, y))
   pygame.display.flip()   #Update screen
   x-=1